Ir arriba
Información del artículo

Systematic measuring cortical thickness in tibiae for bio-mechanical analysis

A. Sánchez-Bonastre, L.F. S. Merchante, C. González-Bravo, A. Carnicero

Computers in Biology and Medicine Vol. 163, pp. 107123-1 - 107123-21

Resumen:

Background and Objective:

Measuring the thickness of cortical bone tissue helps diagnose bone diseases or monitor the progress of different treatments. This type of measurement can be performed visually from CAT images by a radiologist or by semi-automatic algorithms from Hounsfield values. This article proposes a mechanism capable of measuring thickness over the entire bone surface, aligning and orienting all the images in the same direction to have comparable references and reduce human intervention to a minimum. The objective is to batch process large numbers of patients’ CAT images obtaining thicknesses profiles of their cortical tissue to be used in many applications.

Methods:

Classical morphological and Deep Learning segmentation is used to extract the area of interest, filtering and interpolation to clean the bones and contour detection and Signed Distance Functions to measure the cortical Thickness. The alignment of the set of bones is achieved by detecting their longitudinal direction, and the orientation is performed by computing their principal component of the center of mass slice.

Results:

The method processed in an unattended manner 67% of the patients in the first run and 100% in the second run. The difference in the thickness values between the values provided by the algorithm and the measures done by a radiologist was, on average, 0.25 millimetres with a standard deviation of 0.2.

Conclusion:

Measuring the cortical thickness of a bone would allow us to prepare accurate traumatological surgeries or study their structural properties. Obtaining thickness profiles of an extensive set of patients opens the way for numerous studies to be carried out to find patterns between bone thickness and the patients’ medical, social or demographic variables.


Resumen divulgativo:

Una nueva técnica que utiliza técnicas morfológicas y Deep Learning para medir automáticamente el grosor del hueso cortical a partir de imágenes de TAC. Se procesó el 100% de las imágenes de pacientes con una diferencia media de 0,25 mm y una desviación estándar de 0,2 mm en comparación con las mediciones de un radiólogo.


Palabras Clave: Segmentation; Cortical thickness; Thickness measurement; Hounsfield units


Índice de impacto JCR y cuartil WoS: 7,000 - Q1 (2023)

Referencia DOI: DOI icon https://doi.org/10.1016/j.compbiomed.2023.107123

Publicado en papel: Septiembre 2023.

Publicado on-line: Junio 2023.



Cita:
A. Sánchez-Bonastre, L.F. S. Merchante, C. González-Bravo, A. Carnicero, Systematic measuring cortical thickness in tibiae for bio-mechanical analysis. Computers in Biology and Medicine. Vol. 163, pp. 107123-1 - 107123-21, Septiembre 2023. [Online: Junio 2023]


    Líneas de investigación:
  • Biomecánica
  • Modelos matemáticos e Inteligencia Artificial aplicados al sector de la salud

pdf Previsualizar
pdf Solicitar el artículo completo a los autores